ST. FRANCIS

 DE SALESCatholic School

Summer Math Packet for

 Students Entering 6th Grade
Dear Student:

Please complete this packet and return it to your math teacher on the first day of school. Work on your packet gradually. The packet will be graded and will count as your first quiz grade. Use the checklist below to help you earn a good grade.
\square Hole-punch your packet and put it into a 3-prong folder. Not including it in a folder will result in -10 points from your grade.Write your name on the front of the folder.Do NOT use a calculator.

ALL WORK MUST BE SHOWN FOR FULL CREDIT. (Extra paper may be used for work. Please number your problems and include them in your folder.)

Each day your packet is late will result in -10 points from your grade.

No packets will be accepted after September 6.

If you have any questions regarding the summer math packet, please feel free to contact Mrs. Duick at mduick@sfdscs.org.

Sincerely,

Mrs. Duick and Dr. Duick
\qquad

Addition

Find the sum of the two numbers in each problem. Show all work.
3. 726
$+268$

1. 652
2. 203

+525

$$
+345
$$

Example:

Decimal Addition:
Remember to line up the decimals before adding. Bring the decimal straight down in your answer.
5. $51.4+2.86$
6. . $1274+8.25$
$+1.46$
4. 7.75

Decimal Subtraction:
Remember to line up the decimals before subtracting. Bring the decimal straight down in your answer.
10.
11.
12.
80.401-44.23
75.89-9.4

Multiplication

Find the product of the two numbers in each problem. Show all work.

Example:

$$
\begin{array}{r}
\times 16 \\
\hline 324 \\
+540 \\
\hline 864
\end{array}
$$

13.

$$
14 .
$$

15.

42
$\begin{array}{r} \\ \times \quad 8 \\ \hline\end{array}$

84
89
$\times \quad$

Decimal Multiplication:
Multiply as you would with whole numbers. Count the decimal places in each factor. The product (answer) has the same number of decimal places.
16.
.13
$\begin{array}{r}\times \quad 70 \\ \hline\end{array}$
17.
5.1
$\times \quad 2$
18.
.108
$\begin{array}{r}2.5 \\ \hline\end{array}$

Division

Find the quotient in each problem. If there is a remainder, state the remainders as $R=$ \qquad . Show all work. Feel free to use a separate sheet of paper.
19.
$7 \longdiv { 5 9 1 }$
20.
$1 2 \longdiv { 2 6 4 }$
21.
$4 3 \longdiv { 2 8 1 5 }$

Decimal Division:
If the divisor (outside number) is a decimal, you must move the decimal point (using multiplication) to the right until it becomes a whole number. Then, move the decimal in the dividend (inside number) the same number of times. Divide to find your answer (quotient). Then, move the decimal straight up from the dividend to the quotient. Remember, no remainders.
22.
23.
24.
divisor $\xlongequal{\frac{\text { quotient }}{\text { dividend }}}$
$3 \longdiv { 3 1 . 8 }$
$. 5 \longdiv { 7 . 4 5 }$
$. 1 2 \longdiv { 1 2 . 2 4 }$

```
Rounding
Underline the given place value. Look to the right. If this digit is
5 or greater, increase the underlined digit by 1. If the digit to
the right is less than 5, keep the underlined digit the same.
```

Round to the
nearest...

hundredth
$0.547 \longrightarrow 0.55$

Round to the nearest....
25. tenth
0.3479
26. hundredth
0.7553
27. whole number
3.268
28. ten
162.21
29. thousandth
0.0036
30. hundred
990.54

Compare the decimals.
Compare using $\langle,>$, or $=$
$1.2 \bigcirc 1.20 \quad 1.2=1.20$
31. 0.2050.21
32. 1.03
 0.03
 0.03
33. 0.04
 0.050
35. 0.52
 0.500
36. 0.41

Prime Number: A whole number greater than 1 that has only two factors, 1 and itself. Examples: 2, 3, 5, 7, 11, 13, 17, and 19 are all prime numbers.

Composite Number: A whole number greater than 1 that has more than two factors. Example: 8 is a composite number since its factors are 1, 2, 4, 8 .

Determine if the following numbers are prime or composite. If the numbers are composite, please list all of the factors.
37. 27: \qquad
38. 39: \qquad
39. 43: \qquad
40. 49: \qquad

Exponents

A way to show repeated multiplication by the same factor is to use an exponent. In this example: $2^{3}=2 \times 2 \times 2=8$. The small raised three is the exponent. It tells how many times the number 2 , called the base, is multiplied by itself.

Solve the following expressions by writing the expanded notation (repeated multiplication) and find the value.
41. 6^{2}
42. 2^{6}
43. 3^{4}
44. eight squared
45. five cubed

Greatest Common Factor

The greatest factor that two or more numbers have in common (GCF).

1. List all the factors of four in order
2. List all the factors of twenty in order
3. List the common factors

Finding Common Factors:

$$
4: 1,2,4
$$

20: 1, 2, 4, 5, 10, 20
Common Factors: 1, 2, 4 GCF= 4
4. Write the greatest common factor

List all the factors for each number. Circle the common factors.
46. 18 : \qquad

30 : \qquad

Common Factors: \qquad Greatest Common Factor: \qquad
47. 60 : \qquad

45 : \qquad

Common Factors: \qquad Greatest Common Factor: \qquad
48. 23: \qquad

29: \qquad

Common Factors: \qquad Greatest Common Factor: \qquad
49. $56:$ \qquad

72: \qquad

Common Factors: \qquad
\qquad

Least Common Multiple

The smallest nonzero multiple that two or more numbers have in common.

1. List the first 6 multiples of 4
2. List the first 6 multiples of 6
3. List the common multiples
4. Write the least common multiple.

Finding Common Multiples:
4: 4, 8, 12, 16, 20, 24
6: 6, 12, 18, 24, 30, 36
Least Common Multiple $=12$
50. 8 : \qquad

12 : \qquad

Common Multiples: \qquad Least Common Multiple: \qquad
51. 7 : \qquad

11 : \qquad

Common Multiples: \qquad Least Common Multiple: \qquad
52. 25 : \qquad

10 : \qquad

Common Multiples: \qquad Least Common Multiple: \qquad
53. 24 : \qquad 36: \qquad

Common Multiples: \qquad Least Common Multiple: \qquad

Prime Factorization is a composite number renamed as a product of prime numbers. You may make a factor tree to find the answer. Put final answer in exponent form.

Find the prime factorization of 36 .

36		
/	\backslash	
6	$\times 6$	
11	/	
2×3	2×3	$2^{2} \times 3^{2}$

55.

56.

91

57.

48

Comparing Fractions

Compare each pair of numbers. Write the correct comparison symbol ($\langle\rangle,,=$) in each circle. Make sure you have common denominators before comparing numerators.

Example:

58.

59.
$\frac{3}{4} \bigcirc \frac{3}{8}$
60.

61.
62.

63.
$\frac{7}{8} \bigcirc \frac{3}{4}$

Ordering Fractions

Order the following fractions from least to greatest.
64.
$\begin{array}{lllll}\frac{3}{8} & \frac{5}{8} & \frac{4}{8} & \frac{2}{8} & \frac{7}{8}\end{array}$
66.
$\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{5}$
65.

$$
\begin{array}{lllll}
\frac{1}{5} & \frac{4}{5} & \frac{1}{10} & \frac{6}{10} & \frac{7}{10}
\end{array}
$$

67.

$$
\begin{array}{lllll}
\frac{1}{2} & \frac{5}{16} & \frac{30}{64} & \frac{3}{8} & \frac{9}{32}
\end{array}
$$

Order of OperationsSolve the following problems. Show your work. Be
sure to follow the order of operations.
Parenthesis
Exponents
Multiplication or Division: Which ever comes first
from left to right.
Addition or Subtraction: Which ever comes first
from left to right.

Example: $8-4 \div 2+2=$
$8-2+2=$
$6+2=$
8
69. $36 \div 4 \times 3=$
70. $(30+8) \times 6-1=$
71. $(30+8) \times(6-1)=$
72. $(29-18)+14 \div 2+6=$
73. $64 \div 8 \times 2$
74. $36-5(16-11)=$
75. $25+18 \div 6-1=$
76. $24+6^{2}-1^{4}=$
Geometry-Who am I?
Use the following shapes to answer the
questions below.

77. I am a 2 dimensional shape that has four sides. I have four 90 degree angles. I have two sets of parallel lines. I also have two sides that are one length, and my other two sides are a different length.

Who am I? \qquad
78. I am a 2 dimensional shape that has three acute angles. All of my sides are the same length. I have no parallel sides.

Who am I? \qquad
79. I am a 2 dimensional shape that has four sides. I have two obtuse angles and two acute angles. I have two different sets of parallel sides. I also have two sides that are one length, and my other two sides are a different length.

Who am I? \qquad
80. I am a 2 dimensional shape that has 5 obtuse angles. I do not have any sides that are parallel.

Who am I? \qquad
81. I am a 2 dimensional shape that has four 90 degree angles. I have four sides that are all the same length. I have two different sets of parallel lines.

Who am I? \qquad
82. I am a 2 dimensional shape. My perimeter is also known as a circumference.

Who am I? \qquad

Simply Fractions

Simplify the following fractions. If the fractions are improper, change them to mixed numbers then simplify.
83.
84.
$\frac{14}{28}$
$\frac{15}{55}$
86.
87.

$$
\frac{34}{48}
$$

$$
\frac{17}{4}
$$

Adding Fractions and Mixed Numbers

Add the following fractions. Make sure you have common denominators before adding. Remember, you only add the numerator (top number) and you keep the denominator (bottom number) the same! Simplify your final answers.

Example:

$$
\begin{gathered}
\frac{1}{3}+\frac{1}{5}= \\
\downarrow \\
\frac{5}{15}+\frac{3}{15}=\frac{8}{15}
\end{gathered}
$$

91.

$$
2 \frac{3}{8}+1 \frac{2}{8}=
$$

85.

12 $\overline{51}$
88.
$\frac{80}{25}$
Example: $\quad 10 \div 5=\frac{2}{5}$ $25 \div 5=5$

88

Subtracting Fractions

Subtract the following fractions. Make sure you have common denominators before subtracting. Remember, you only subtract the numerator (top number) and you keep the denominator (bottom number) the same!
Simplify your final answers.
93.

$$
\frac{5}{6}-\frac{3}{6}=
$$

94.

$2 \frac{8}{12}-1 \frac{3}{12}=$

Example:

$$
\begin{aligned}
& \frac{5}{6}-\frac{1}{3}= \\
& \frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

95.
96.

$$
\frac{7}{10}-\frac{2}{4}=
$$

Multiplying Fractions

Multiply the following fractions. Multiply the numerators; then multiply the denominators. Simplify, if necessary.
97.

$$
\frac{3}{4} \times \frac{1}{3}=
$$

98.

$\frac{2}{3} \times \frac{5}{8}=$

Example:

$$
\frac{3}{5} \times \frac{5}{9}=\frac{15}{45}=\frac{1}{3}
$$

99.
100.

$$
\frac{1}{3} \times \frac{2}{5}=\quad \frac{7}{8} \times 2=
$$

